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Evidence of heritability of individual fit-
ness traits in wild populations has reo-
pened a debate about the relative
contribution of neutral, stochastic
demographic processes to observed
variations in life histories.

There are conceptual differences
among published studies documenting
heterogeneity in life histories; differ-
ences so fundamental that they led to
misunderstandings between schools of
thought.

The question of [15_TD$DIFF] the processes
generating [16_TD$DIFF] heterogeneity in longitudinal
trajectories has stimulated a large body
of work in econometrics, political,
social and biomedical sciences, which
have highlighted risks of flawed infer-
ence; these risks have been over-
looked in biology.

Other disciplines offer useful frame-
works for future work on life histories
in three areas: terminology, the charac-
terization of the diversity of processes
underlying variation in life histories[17_TD$DIFF], and
the methods of statistical inference to
disentangle these processes.
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What causes interindividual variation in fitness? Evidence of heritability of
latent individual fitness traits has resparked a debate about the causes of
variation in life histories in populations: neutralism versus empirical adapta-
tionism. This debate about the processes underlying observed variation pits
neutral stochastic demographic processes against evolutionarily relevant dif-
ferences among individual fitness traits. Advancing this debate requires careful
consideration of differences among inference approaches used by proponents
of each hypothesis. Here we draw parallels between several disciplines focus-
ing on processes generating variation in individuals’ life-course, and we con-
trast methodologies to disentangle these processes. We draw on other
disciplines to clarify terminology, risks of flawed inference, and expand the
panel of hypotheses and formalizations [14_TD$DIFF]of processes generating variation in life
histories.

What Is at Stake in the ‘Heterogeneity versus Stochasticity’ Debate?
Longitudinal studies of vertebrates show that individuals differ in observed longevity and
number of offspring [1,2] with a minority contributing most offspring to future generations.
Is this difference among individual fates mostly due to chance, or do individuals differ in fitness
traits? Althoughmost biologists would consider that the truth lies somewhere in themiddle, the
debate is unresolved when the fitness traits are not directly observable. Large interindividual
differences in lifetime fitness prompted biologists to assume an underlying variation in ‘quality’
between the individuals, although this is an old terminology which remains unclear [3–5]. An
alternative formulation is that populations are heterogeneous [5]. Heterogeneity can manifest
itself through a positive relationship between reproductive success and survival probabilities
[6]. The idea of a ranking of individuals according to values of demographic parameters such as
longevity and reproductive success (fitness traits) goes back to the 1980s in wildlife studies
[7,8], but is called by several names: ‘fixed heterogeneity’ [5], persistent ‘demographic
heterogeneity’ [9], or ‘individual heterogeneity’ [8] (see Glossary). Heterogeneity in fitness
traits is a cornerstone of evolutionary ecology, yet identifying all the observable individual
characteristics that can explain heterogeneity is impossible. Hidden Persistent Demo-
graphic Heterogeneity (HPDH) describes unobserved individual characteristics that are
fixed after individuals entered the study. In statistical models of mortality risk, HPDH controls for
unobserved differences across individuals caused by factors that have not been, or cannot be
measured [10]. The original motivation was to quantify unexplained heterogeneity [10] and to
avoid flawed inferences in studies of senescence [11–17]. Indeed, in heterogeneous popu-
lations the pattern of variation in survival probability throughout life expressed in the population
differs from that expressed at the level of groups of ‘frail’ and ‘robust’ individuals, for instance
[11,14]; this disjunction illustrates ‘heterogeneity's ruses’ in demography [14]. HPDH has
historically been used as a tool of statistical convenience to account for unexplained differences
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among individuals in ‘quality’, while leaving it unclear how precisely this elusive ‘quality’ relates
to evolutionary theory [4,5]. Although studies of heterogeneity in mortality risk have historically
been focused on people, animals, and machines [14]), this framework has been extended to
other organisms, for example, plants and insects [12,18].

A conjunction of factors recently propelled HPDH to the forefront in life history studies [19–21]:
(i) A methodological breakthrough in longitudinal data analysis allows estimation of HPDH

when the detectability of individuals is imperfect, a typical situation in wildlife studies [22,23].
Previously only a handful of studies with quasiperfect detectability could address HPDH, for
example [15–17,24–29].

(ii) Support for HPDH [22,23,30] and heritability of unobserved ‘latent’ traits in natura [30–32], in
the situation of imperfect detectability.

(iii) The emergence of the neutral theory for life histories [33–35], which aims at evaluating the
contributions of stochastic demographic processes and HPDH to lifetime fitness. This theory
has been tested using data from animals, plants, and humans [35].

These developments used different approaches and reached conflicting conclusions about the
processes underlying variation among individual life histories and lifetime fitness [30–35]; but the
debate is essentially about empirical adaptationism versus neutralism [36,37]. The proponents of
the neutral theory for life histories contend that large differences in lifetime reproductive success
are erroneously interpreted as ‘adaptive, resulting from and driving evolution by natural selection’
[34], and that empirical studies have underestimated the contribution of stochastic processes to
lifetime reproductive success and longevity. In other words, biologists might have erroneously
attributed the diversity of life histories to unobserved, possibly heritable interindividual differences
in fitness traits, whereas chance alone in homogeneous populations is sufficient to explain most
of the life history variation in populations. Yet quantitative genetics studies of lifetime reproductive
success or lifespan have provided evidence of heritability in these important parameters for
evolutionary studies [38]. As in demography [11], behavioral ecology [39], and wildlife studies
[40,41], quantitative genetics often relies on latent parameters to estimate heritability in life history
traits [42,43], although such latent variables (i.e., genetic additive variance) are informed by the
pedigree, unlike HPDH. The current controversy about the contribution of unobserved individual
traits to the diversity of life histories in populations is twofold: the reality of latent traits is
challenged, as well as the possible contribution of natural selection to life-course variation
[36,37].

The relative importance of HPDH and other processes generating variation in longitudinal
trajectories has stimulated a large body of work in econometrics, political and social sciences
[44–49]. Studies in these disciplines have highlighted risks of flawed inference about these
processes, which have been overlooked in biology. There are fundamental differences among
methodologies used to address HPDH in biological studies [21–23,27,30–35,50], and failure to
identify the consequences of methodological choices led to misunderstandings among biolo-
gists. In addition, despite identical questions (e.g., do latent traits matter in shaping an indi-
vidual's life-course?), some methodologies used in biology clearly differ from those used in
disciplines focusing on humans. We review and contrast the methods used to tease apart the
contributions of different processes to interindividual variation in life histories. We draw parallels
between disciplines to clarify the different views of heterogeneity, the statistical formalizations of
heterogeneity, and the approaches available to address variation in longitudinal data. This paper
highlights the conceptual differences among studies of heterogeneity in life histories, and unveils
misunderstandings about latent traits across schools of thought. We outline that other dis-
ciplines offer useful frameworks for future work on life histories. We emphasize three areas in
which other disciplines can bring new perspectives to life history studies: terminology, the
diversity of processes underlying variation in life histories, and themethods of statistical inference
to disentangle these processes.
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Glossary
Demographic heterogeneity:
sensu [9], ‘Among-individual variation
in vital parameters such as birth and
death rates that is unrelated to age,
stage, sex, or environmental
fluctuations.’ Demographic
heterogeneity refers to interindividual
The Common Methodological Basis: Markovian Models for Series of
Reproductive States and Survival Events
The standard framework in vertebrate or plant studies considers structured populations, where
demographic parameters vary according to such state variables as age, developmental stage, or
reproductive state (success, number of offspring, failure; Box 1). Age is a deterministic state
variable: knowledge of state at time t permits full knowledge of state at time t + 1. Other state
variables, such as reproductive or developmental state, are stochastic: the state of an individual
differences in demographic
parameters.
Demographic stochasticity: the
process behind variations in the
realized fates of individuals under
specified values of demographic
parameters [9]. This concerns all the
demographic parameters underlying
longitudinal trajectories: survival,
reproduction, or transition probability
among reproductive states. In age-
structured populations, or in
populations where survival probability
does not vary with age, demographic
stochasticity creates a distribution of
longevities.
Dynamic heterogeneity: the pattern
of variation in realized life histories (e.
g., sequences of reproductive states)
that arises solely from the realization
of Markovian binomial or multinomial
processes. This variance exists in
populations (or groups) composed of
individuals characterized by identical
demographic parameters [33].
Fixed heterogeneity or persistent
demographic heterogeneity:
permanent differences among
individuals in survival probability or
fecundity (breeding and success
probability, or number of viable
offspring). The interindividual
differences in demographic
parameters are assumed to be
constant throughout life, or at least
during the life stage under
investigation (e.g., after recruitment)
[5,9].
Frailty: in survival analysis, including
all the important risk factors is usually
beyond reach, sometimes because
investigators do not have all the
relevant information at the individual
level [56]. For example, in the
biomedical field, it might not be
possible to measure all relevant
covariates related to the disease of
interest, either because the
importance of some covariates is still
unknown, or because collecting such
data would be prohibitively
expensive. In such situations, it is
useful to consider heterogeneity
caused by unknown covariates or
factors [56]. ‘Frailty [. . .] is a general
concept that does not distinguish

Box 1. Life Cycle, Longitudinal Trajectories and Associated Demographic Parameters

An individual history is a sequence of states which describe the breeding activity and survival, generally on a yearly basis
for long-lived animals (Figure IA). In this example based on kittiwakes (Rissa tridactyla) [53], seven states are considered:
PB, prebreeder; N, nonbreeder; F, breeding failure; 1 C, 1 chick fledged; 2 C, 2 chicks fledged; 3 C, 3 chicks fledged; D,
dead. Following [51,52], the series of states can be modeled using a multistate Capture–Mark–Recapture model
including survival probability and transition probability among states. Sr

t : survival probability of an individual in state r at
time t. C rs

t : probability that an individual that was in state r at time t is state s at time t + 1, given that it survived from t to t
+ 1. If the individual survives in two consecutive years, the sequence of states in the individual's life is accounted for by a
first-order Markov process, where state in year t + 1 depends on state in year t (Figure IB). The two broken boxes
correspond to the part of individual histories that is considered as the result of stochastic processes in multistate models
focusing on the segment of life starting at recruitment. Transition probability between states in year t and t + 1 can also
depend on other observable covariates such as sex, age, year, age of first breeding, cohort, year, cumulative number of
offspring produced at age a [20,34,68].
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Figure I. Possible Transitions among States in Individual Trajectories. (A) Possible state transitions. (B) Two
possible longitudinal trajectories of equal length and associated demographic parameters.
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between acquired weakness, lifestyle
factors, environmental risks, and
innate biological frailty. It combines in
a single measure all the factors that
operate to increase or decrease a
given individual's mortality risk,
regardless of the source of
heterogeneity’ [10]. Individual
heterogeneity is usually described by
a random effect with a specified
distribution [8,22,56]. HPDH can be
modeled this way (Table 1).
Heterogeneity's ruses: ‘As a cohort
of people, animals, or machines
ages, the individuals at highest risk
tend to die or exit first. This
differential selection can produce
patterns of mortality for the
population as a whole that are
surprisingly different from the patterns
for subpopulations or individuals. [. . .]
because patterns at the individual
level may be simpler than composite
population patterns, both theoretical
and empirical research may be
unnecessarily complicated by failure
to recognize the effects of
heterogeneity’ [14].
Hidden persistent demographic
heterogeneity HPDH: the factors
causing differences in survival,
breeding, or success probabilities are
unobservable or not observed.
Unobserved heterogeneity in survival
probability is also referred to as
‘frailty’ [10–14,56].
Individual heterogeneity: sensu [8],
unobserved interindividual variation in
demographic parameters (fitness
traits). Differences in demographic
parameters among individuals are
assumed to be constant throughout
life, or at least during the life stage
under investigation (e.g., after
recruitment).
Individual stochasticity: sensu [70],
‘The movement of an individual
through its life cycle is a random
process, and although the eventual
destination (death) is certain, the
pathways taken to that destination
are stochastic and will differ even
between identical individuals.’
Individual stochasticity is a specific
category of pattern observed in
individual trajectories in stage- or
age-structured populations, and is
intrinsically linked to demographic
stochasticity. Assuming a multistate
(Capture–Mark–Recapture) model
[51], it is the variation in series of
states created by (i) the successive
realizations of stochastic transition
processes governed by specified
transition probabilities, and (ii) the
in year t is a random variable. At age a, there is a distribution of individual states; if individuals
survive until age a + 1, they will change state in a stochastic manner. Populations structured by
age or state are heterogeneous, but here heterogeneity is measured in aggregates of individuals,
not at the individual level. In longitudinal studies, where the same individual is ideally followed
from birth to death, statistical models can account for the relationship between state and survival
probability. The succession of states until death–that is, the trajectory–can be accounted for by
Markovian models where reproductive output in year t + 1 depends on previous state(s) (Box 1).

Markovian models are useful to address whether reproduction at time t carries costs on survival
probability between t and t + 1, or on reproduction at time t + 1 in survivors [51]. If so, raising
numerous offspring at time t will be associated with a decrease in the probability of raising
numerous offspring at time t + 1. This reflects a trade-off between current and future reproduc-
tion. This approach is central to empirical evaluations of the fundamental concept of trade-offs in
wildlife studies [51]: trade-offs are expected to lead to specific arrangements of states in
trajectories. Alternatively, successful reproduction at time t can be associated with a high
probability of success at time t + 1 [6]. In both cases, past reproduction will influence future
state: this is called ‘state-dependence’ in other disciplines [47,48].

Longitudinal Studies of Repeated Events: Cross-disciplinary Parallels
To understand the processes governing arrangements of states in trajectories, biologists can
draw on other disciplines. When we ask: ‘Does past reproduction modify the probability of future
outcomes?’, economists would ask: ‘Does unemployment cause future unemployment?’ [46].
Such questions actually have a long history in research focused on employment trajectories of
humans [44–49].

Hypotheses and statistical models for longitudinal data
Two hypotheses were proposed in the 1980's to explain repeatability of human behavior in
econometrics [47]:

(i) State-dependence. This is the process generating correlation between past and future in
individuals’ lives; it reflects how experiencing an event alters the probability of experiencing the
event again. For example, experiencing unemployment might lead to a higher probability of
experiencing unemployment again in the future, by erosion of human capital [49]. In biology,
current state is influenced by past history in different ways: trade-offs translate into negative
state-dependence, and the spiral of failure into positive state-dependence. Economists use
Markov models to address state-dependence [44,47], as do biologists. For the latter, however,
the Markov processes are usually ‘hidden’ in the sense that imperfect detection can obscure
knowledge of animal states at each sampling occasion. Multistate Capture–Mark–Recap-
ture (CMR) models are used to alleviate the issue [51] (Box 1). State is observable if the animal
is recaptured or resighted, but multievent models can also account for unobservable states or
state uncertainty [52].

(ii) Unobserved heterogeneity. This hypothesis attributes the persistence in observed outcomes
to differences across individuals in a baseline propensity to experience the events [46–48].
Borrowing from economics models once again, persistent unemployment may result from low
education or other unfavorable characteristics that can be hard to measure in practice [47]. In
biology, repeatability of states might reflect differences in individual propensities to breed
successfully, or latent fertility rates sensu [53]. This situation is consistent with the hypothesis
of differences in ‘individual quality’ [3–5]. Generally, ‘unobserved heterogeneity’ is equated to
‘fixed heterogeneity’ in life history studies (HPDH), though unobserved individual differences can
also change during life [47,54]. The existence of hidden sources of variation in mortality or
reproduction is often a legitimate concern in analyses of longitudinal data [55,56], even when
4 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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variation in longevities resulting from
successive realizations of stochastic
survival processes governed by
specified state-specific survival
probabilities [70,71]. In age-
structured populations, individual
stochasticity manifests itself by the
distribution of longevities [71].
Latent traits: conceptual constructs
used when the observed outcome of
interest, for example, alive at age a,
is assumed to depend on
unmeasurable individual traits: here,
the individual survival probability [53].
This probability cannot be measured
using data from the individual only:
the sample size is 1 and death
occurs only once. Individuals are then
assumed to be characterized by an
unmeasured, latent propensity to
survive. In longitudinal data analysis,
latent variables are mathematical
constructs used to represent the
effect of unobservable (or
unmeasured) factors on a response,
and are also used to account for the
unobserved heterogeneity between
subjects (HPDH). Latent traits can
remain unchanged during life, or not
[47,78,79]. If investigators were able
to measure all the relevant individual
factors and covariates influencing the
outcome of interest, ‘latent’ variables
would not be needed. In quantitative
genetics, latent traits have a specific
interpretation: ‘The expected
(additive) effect of an individual's
genotype on phenotype, usually
expressed relative to the population
mean phenotype’ [43].
Markov process: a sequence of
random (state) variables indexed by
time with serial dependence in the
outcomes. The state of the process
at t + 1 depends only the recent past
state(s).
Multistate Capture–Mark–
Recapture (CMR) models [51,52]:
in their first-order Markovian version,
sequences of states in individual
histories are governed by Sr

t : survival
probability of an individual in state r
at time t, and C rs

t : the probability that
an individual in state r at time t and
that survives from t to t + 1 is in state
s at time t + 1. Such models account
for state-dependence. In studies from
wild animals, an additional parameter
accounts for the probability of
detecting an individual in state r at
time t, given that the individual is alive
and present in the study area (pr

t ).
Neutral Theory for Life Histories,
null and neutral models: this theory
has first been developed for stage-
investigators cannot explain such variation. Heterogeneity might for example reflect genetic
differences [38,57], or individual characteristics molded during development before recruitment
in studies starting at recruitment [9]. For evolutionary ecologists, variation at the individual level
can be relevant to natural selection if heritable [58,59]. In fact, this variation is relevant to
population viability, irrespective of heritability [7–9,60,61].

In econometrics, state-dependence and unobserved heterogeneity lead to different policy
recommendations [48,62–64]. In the case of state-dependence, a short-term policy helping
unemployed workers move to employment will cause a persistent increase in employment [47].
Conversely, if persistence in unemployment is due to unobserved heterogeneity [49], then the
policy is unlikely to succeed [47].

Importantly, HPDH and state-dependence are not mutually exclusive. It is possible to include
both components in statistical models [30,32,47,65] (Box 3, Model I). Economists consider both
hypotheses simultaneously [47,64,66], whereas evolutionary ecologists first considered hypoth-
eses separately [24–26,67]. Only recently have they usedMarkovianmodels with HPDH [30–32].
HPDH is often modeled using individual random effects [22,30]. This statistical operationalization
of heterogeneity is consistent with the concept of frailty in biomedicine and demography
[10,13,55].

Where the Parallels between Methodologies End
In biology, several studies have recently turned to neutral models [33–35,68,69] to address the
amount of variation in individual trajectories attributable to stochasticity in a Markovian process.
The neutral theory for life histories posits that differences among individual trajectories only reflect
the randomness in the realization of biological processes: reproduction and mortality. These
processes are governed by demographic parameter values (survival and transition probabilities)
of a Markov model with an absorbing state: death. The parameters can change throughout life,
but are shared by individuals of the same age or state in year t. Even in populations where survival
probability varies only by age, or does not vary at all, realizations of the survival process generate
trajectories of different lengths, that is, a distribution of longevities. In stage-structured pop-
ulations, the Markov process on which the neutral theory for life histories is based generates a
pattern of ‘dynamic heterogeneity’ in trajectories [33]. Caswell [70,71] named the resulting
variation ‘individual stochasticity’.

The neutral theory for life histories posits that populations are composed of phenotypically
identical individuals [33–35], a condition fulfilled by having a single transition matrix for the
entire population (Box 2; Box 3, Model II). There is, however, variation among individuals in
realized longevity and successions of reproductive states during life (Box 2), but this variation
is evolutionarily neutral [35]. Empirical tests of the neutral theory for life histories concluded
that ‘nonselective’ stochastic demographic processes are sufficient to explain observed
distributions of longevities, lifetime reproductive success or fitness (but see [19,20]). Con-
versely, the HPDH hypothesis assumes that the observed fate of individuals is the realization
of stochastic processes governed by parameter values of a model including unobserved and
potentially unobservable variables [44]. This statistical formalization accounts for persistent
individual-specific parameter values: survival, breeding, and success probabilities (Box 3,
Model III). HPDH assumes that populations are phenotypically heterogeneous, that is,
models rely on individual-specific transition matrices, which is a necessary condition
for natural selection to occur. This allows addressing whether latent fitness traits are
heritable [31].

In the neutral theory for life histories, the realizations of stochastic demographic processes
provide a null hypothesis for observed life history variation [33–35,68]. To assess the baseline
Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 5
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structured populations, where series
of states (e.g., reproductive
outcomes) in longitudinal trajectories
are accounted for by Markovian
processes (Box 1). In stage-
structured populations, the neutrality
assumption is that all genotypes
produce a single life-history
phenotype (the same transition matrix
[33]; Box 2), or that there is only one
life history genotype (one transition
matrix) in the population. The
transition matrix defines the
phenotype. ‘Null’ or ‘neutral’ models
are used interchangeably in the
neutral theory for life histories [33–
35].
Trajectory: (i) Observed trajectory. In
longitudinal data analysis [72] and for
analysis of data from wild animals
with Capture–Mark–Recapture
models [22,30,51,52], trajectories are
data. Data consist of sequences of
states, possibly partially observed (i.
e., including missing data). In studies
of wild animals, data can be missing
because of incomplete detection of
individually marked animals [51,52],
or because of difficulties in assigning
variation in trajectories expected with state-dependence only, neutral models a priori exclude the
alternative process: HPDH. The transition matrix is used to assess the expected amount of
variation among trajectories under fully random expectation. Individual trajectories are also
simulated using parameter estimates (Box 2). The one-sided alternative hypothesis is that
variation in observed trajectories is larger than that expected with state-dependence only.
The predictive performance of the neutral model is evaluated by comparing actual and simulated
data (e.g., lifetime reproductive success). This is the ‘sufficiency view’ of null models [69]. If the
null hypothesis is not rejected, other processes (including HPDH) are not considered, meaning
that the diversity of life histories reflects neutral variation in a homogeneous population. This
approach based on neutral models to draw inferences about HPDH differs from that used in
longitudinal data analysis [26,30,50,63,64,66,72,73]. In the latter, the focus lies on the discrimi-
nation among hypotheses by subjecting data to formal inference models incorporating the
different processes of interest [74,75].

The question of how best to tease apart the contributions of state-dependence and HPDH to the
observed diversity of trajectories in populations [19] has stimulated a large body of work in
econometrics and social sciences [44–49,62–64,66,76]. This question is also central to tests of
the Neutral Theory of Life Histories. The fact that these hypotheses have different implications in
terms of social policy provided a strong incentive to develop robust approaches to disentangle
the contributions of both processes to longitudinal trajectories in humans. Methodological
development in these disciplines concerns longitudinal data analysis techniques, more specifi-
cally approaches to obtain unbiased estimates of Markovian processes and HDPH, and to test
hypotheses about both processes.
a state to an individual [80]. In
studies with perfect detection of
individuals, age at death is observed
if trajectories are uncensored [72],
and in studies with imperfect
detection, age at death can
sometimes be observed when dead
recoveries are available [94]. (ii) The
trajectory sensu [33] considered in
the neutral theory for life histories is
by nature a hypothesis which
depends on the form of the neutral
model specified a priori: a Markov
process whose parameters are
estimated using a multistate Capture–
Mark–Recapture approach [51]. (iii)
The reproductive trajectory is a
possible realized sequence of
reproductive states following a
specified transition matrix [34]. The
trajectory is defined independently of
when death occurs: the sequence is
truncated at an age exceeding the
largest observed age at death (Box
2). A sequence of state-specific
survival probabilities is a posteriori
associated with each possible series
of states, which leads to a
distribution of age at death for each
trajectory (Box 2). Assuming that
phenotypically identical individuals
follow the same transition matrix and
exhibit the same realized sequences
of states, the within-trajectory
variance is the variance in realized

Box 2. Decomposition of the Variation in Longitudinal Trajectories in Phenotypically Homogeneous
Populations

The Neutral Theory for Life Histories aims at evaluating the variation in life history trajectories expected under the
hypothesis that populations are phenotypically homogeneous. The phenotype is defined by a transition matrix in a first-
order Markovian model. Assume that there are two reproductive states: success (1) and failure (2), plus an absorbing
state: ‘dead’. The probability of an individual being in state s in year t + 1 is governed by the survival and transition
matrices:

S1 0 1�S1

0 S2 1�S2

0 0 1

0
@

1
A�

C11 C12 0
C21 C22 0
0 0 1

0
@

1
A

Here survival probability (Sr
[9_TD$DIFF]) and transition probability (Crs) are assumed to be constant over time, but this simplifying

assumption can be relaxed. Sr is the survival probability of an individual in state r. The probability that an individual is in
state s in year t + 1 exclusively depends on its state r in year t (Crs), and the sequence of states in the individual's life is
accounted for by a first-order Markov process [51]. The total variation in lifetime reproductive success reflects the
variation among trajectories due to the arrangement of states, and to the time of death (Figure IA; values used for
simulations: C11 = 0.65, C21 = 0.55. C12 = 1 � C11, C22 = 1 � C21, S1 = 0.92, S2 = 0.845, success probability in the first
reproductive event: 0.55). With real data, longitudinal data analysis techniques [44,47,65,72], and multistate capture–
mark–recapture (CMR) models [51,52] can be used to address the sources of variation in both mortality and the
sequence of reproductive states.

In studies of the Neutral Theory for Life Histories, the total variation in lifetime reproductive success is decomposed into
two parts. First the variation among trajectories due to ‘reproductive dynamics’ exclusively [33]: mortality is not
considered (Figure IB; trajectories were truncated at 30 years of age). The probability of the individual being in state

s in year t + 1 is governed by a transition matrix: with only two states, success and failure: C11 C12

C21 C22

� �
. Second, the

‘within-trajectory’ variation due to mortality only, assuming that the reproductive trajectory is predefined. A realized
reproductive trajectory is first simulated without considering mortality (Figure IC, upper left panel). The survival matrix is
mapped a posteriori and creates variation due to mortality occurring at different ages within the trajectory [33,34]. The
‘within-trajectory’ variance sensu [ [10_TD$DIFF]34] is only accessible via simulations. With real data, trajectories cannot be first realized
and then a posteriori truncated; actual trajectories are not defined after death. Longitudinal data analysis techniques or
CMR models cannot be used to estimate this variance.
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age at death along this realized
sequence of states.
True state-dependence: the
definition in econometrics is that ‘[. . .]
past experience has a genuine
behavioral effect [on future outcomes]
in the sense that an otherwise
identical individual who did not
experience the event would behave
differently in the future than an
individual who experienced the event’
[47].
Unobserved heterogeneity: in
econometrics this hypothesis states
that ‘[. . .] individuals may differ in
certain unmeasured variables that
influence their probability of
experiencing the event but that are
not influenced by the experience of
the event [. . .]’ [47]. ‘If individual
differences are stable over time,
individuals who experience the event
in the past are likely to experience
the event in the future, even though
the actual experience of the event
has not modified individual behavior’
[48].
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Figure I. Decomposition of the Processes Generating Variation in Longitudinal Trajectories. (A) Six realized
longitudinal trajectories. (B) Six realized reproductive trajectories based on a transition matrix; mortality is not con-
sidered. (C) Within-trajectory variation in realized trajectories due to mortality occurring at different ages.
True versus Spurious State-dependence: Insights from Non-ecological Fields
Economists and biologists want to evaluate the contribution of different processes to the
diversity of trajectories. For this purpose, it is crucial to obtain unbiased estimates of state-
dependence and HPDH. Because policy efficiency depends on the sign and the size of the state-
dependence effect [76], economists were mostly concerned about overestimating state-depen-
dence [46,47,64], that is heterogeneity giving the illusion of state-dependence. When there is
Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 7
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Box 3. Does the Past Influence the Future? State-dependence and Unobserved Heterogeneity in
Longitudinal Data Analysis

The question of the processes generating the arrangement of ‘states’ (e.g., reproductive states) in individual trajectories is
shared by many disciplines focusing on longitudinal data. For example ‘Does infant death alter the risk of infant death of
the subsequent sibling (a scarring effect)?’ [45] Empirical studies in econometrics have provided evidence that the
conditional probability that an individual will experience the event in the future is a function of past experience [47,48].
There are two explanations for this regularity: true state-dependence, and unobserved heterogeneity [47]. True state-
dependence accounts for the modification of the probability of future outcome by past outcome (the ‘scarring effect’).
Another hypothesis is that individuals differ in unmeasured variables that influence their probability of experiencing the
event, for example, environmental characteristics [45]. This hypothesis corresponds to hidden heterogeneity in econo-
metrics, hidden persistent demographic heterogeneity in biology (HPDH). Both processes can be included in a single
statistical model for longitudinal data.

Suppose yi tþ1ð Þ �Bernoulli pi tþ1ð Þ
� �

, where yi tþ1ð Þ stands for a binary outcome (yi tþ1ð Þ ¼ 1: successful reproduction;

yi tþ1ð Þ ¼ 0: failure) of individual i at time t + 1, and pi tþ1ð Þ, for its probability of success. The model accounting for both

state-dependence and HPDH is

log
pi tþ1ð Þ

1�pi tþ1ð Þ

 !
¼ b0 þ gyit þ ai (I)

where b0 is an intercept and ai �N 0; s individualð Þ is a random individual effect.

g is the parameter quantifying true state-dependence.

If an individual i experienced the event at time t, the log-odds of experiencing the event at time t+1 is:

log
pi tþ1ð Þ

1�pi tþ1ð Þ

 !
¼ b0 þ g þ ai

The counterfactual corresponds to what would be the odds of experiencing the event at time t + 1 had individual i not
experienced the event at time t:

log
p�
i tþ1ð Þ

1�p�
i tþ1ð Þ

 !
¼ b0 þ ai

Thus g ¼ log
pi tþ1ð Þ

1�pi tþ1ð Þ

� �
�log

p�i tþ1ð Þ
1�p�

i tþ1ð Þ

� �
, that is g quantifies how having experienced the event affects the probability of

experiencing it again relative to not having experienced it.

State-dependence is a reduced form of (I):

log
pi tþ1ð Þ

1�pi tþ1ð Þ

 !
¼ b0 þ gyit (II)

Likewise, HPDH is a reduced form of (I):

log
pi tþ1ð Þ

1�pi tþ1ð Þ

 !
¼ b0 þ ai (III)

Models (II) and (III) are not simplified versions of each other.

The relationship between the state-dependence model (Model II) and the transition matrix
C11

t C12
t 0

C21
t C22

t 0
0 0 1

0
@

1
A used in

stage-structured population models is the following:

pi tþ1ð Þ ¼ C21
t if yit ¼ 0

C11
t if yit ¼ 1

�

The model including HPDH and state-dependence relies on individual-specific matrices
C11

t C12
t 0

C21
t C22

t 0
0 0 1

0
@

1
A

i

. This model

assumes a distribution of individual transitionmatrices, which is accounted for by random individual effects (ai) in Model (I).

Similarly, for longevity, under the HPDH hypothesis, individual-specific survival matrices are used
S1
t 0 1�S1

t
0 S2

t 1�S2
t

0 0 1

0
@

1
A

i

.
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true state-dependence (for example, a [18_TD$DIFF]scarring effect whereby a spell of unemployment leads
tomore unemployment irrespective of an individual's working skills), large-scale interventions are
possible to favor movement to employment and promote persistent employment. However, if
this state-dependence is spurious and due to heterogeneity, such interventions will miss the
target. Two seminal papers in econometrics have addressed the consequences of ignoring
HPDH [46,48]. In heterogeneous populations, improper treatment of HPDH creates a condi-
tional relationship between future and past events, that is ‘spurious’ state-dependence [47,48]. If
the true data-generating process includes HPDH, Markovian models based on observable or
partially observable states will yield upwardly biased estimates of transition probabilities and true
state-dependence (Box 4). In such a situation, biologists would overestimate support for the
neutral theory for life histories. Conversely, state-dependence is properly estimated when HPDH
is also taken into account (Box 4).

The communicating vessels phenomenon (Box 4), whereby two processes can replace each
other to account for state persistence across time [76] can explain contradictory findings in the
same data [24,34]. Ignoring HPDH results in inflated estimates of state-dependence [50,76], and
the latter decrease when HPDH is taken into account [50], which is consistent with economists’
results [76]. Moreover, to address whether consideration of HPDH changes conclusions
concerning the neutral theory for life histories [34], investigators are tempted to try to mimic
HPDH in post-hoc simulations by adding an arbitrary level of interindividual variation to transition
probabilities estimated with Markovian models. The implicit assumption is that the estimated
state-dependence effect remains unchanged regardless of whether it is estimated using amodel
including HPDH, or not. However, this assumption does not hold [76] because of the commu-
nicating vessels phenomenon.

Teasing Apart the Processes Underlying Variation in Individual Life Histories:
Where to Next?
Identifying and Developing Methods for Robust Inference
To address the contribution of stochastic processes to variation in lifetime fitness, the neutral
theory for life histories specifies a single hypothesis, that of state-dependence. In the context of
longitudinal data analysis, this approach can lead to spurious support for neutrality. The
Box 4. Communicating Vessels: Inference about True State-dependence and Hidden Heterogeneity

A major result from econometrics is how state-dependence and hidden heterogeneity (HPDH) can bias estimation in
statistical models of longitudinal data [47,76]. To illustrate this phenomenon, suppose that only state-dependence or
hidden heterogeneity is operating (Box 3). A very simple binomial model with only state-dependence is:

log
pi tþ1ð Þ

1�pi tþ1ð Þ

 !
¼ b0 þ g yit ðstate� dependenceÞ

A very simple binomial model with only HPDH is:

log
pi tþ1ð Þ

1�pi tþ1ð Þ

 !
¼ b0 þ ai ðHPDHÞ

(i) Suppose HPDH is the true data-generating process, but life histories are analyzed with a model with state-
dependence and ignoring HPDH. Spurious state-dependence is detected: the estimate is biased upward depend-
ing on the true amount of HPDH (Figure IA).

(ii) Suppose state-dependence is the true data-generating process, but life histories are analyzed with a model with
HPDH and ignoring state-dependence. Spurious HPDH is detected: the estimate is biased upward depending on
the true amount of state-dependence (Figure I [1_TD$DIFF]B).

There is a communicating vessel phenomenon between state-dependence and HPDH in statistical models used to
analyze life-history trajectories. Ignoring one process may lead to overestimating the other [44,46,47]. Both state-
dependence and HPDH should be considered in tandem to obtain unbiased parameter estimates and accurate
inferences [44–49,62–66,76]. If either HPDH or state-dependence is a priori chosen as a null model, this null model
will not be rejected because of the positive bias in parameter estimates.

Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 9
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Figure I. Bias in Estimates of State-dependence or Hidden Heterogeneity According to theModel Used to
Analyze Data. (A) HPDH used as a data-generating process but data analyzed with a statistical model that only
includes state-dependence. (B) State-dependence used as a data-generating process but data analyzed with a
statistical model that only includes HPDH [8_TD$DIFF].
estimated parameters used to specify the phenotype (transition matrix) in the neutral theory for
life histories entirely depend on the statistical model chosen for estimation. To identify the
relevant sources of variation in parameters, a natural approach is to define a set of candidate
models and to identify themodels that do a better job at accounting for the data than others. This
requires evaluating the strength of evidence for non-exclusive hypotheses (state-dependence,
HPDH) with, for example, information criteria [74]. The contribution of state-dependence to
variation in observed trajectories can only be addressed with estimates unbiased by HPDH
[44,47]. Accurate parameter estimation might not be possible outside a multimodel inference
framework.

HPDH and state-dependence account for processes operating at the level of demographic
parameters: yearly survival and transition probabilities between breeding states. Longitudinal
analysis techniques focus on this level. Conversely, simulation-based tests of the neutral
10 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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theory for life histories use patterns in entire trajectories for inference, that is, the end product
of successive realizations of survival and breeding processes. When the interest lies in entire
trajectories, a renewed emphasis on partitioning the variance in longevity into individual
stochasticity and HPDH [70,71] components opens perspectives for accurate tests of the
neutral theory for life histories. This approach is based on estimation of the moments of
random variables relevant to entire trajectories in stage-structured populations: longevity,
and the number of visits to nonabsorbing states [70]. Here the first step is accurate
estimation of model parameters, the approach favored by economists. With this method,
it is possible to include the state-dependence model in a set of candidate models accounting
for different combinations of processes and to estimate the strength of evidence for these
models.
Clarifying Terminology
Classically ‘fixed’ heterogeneity evokes fixed differences among individuals due to genetic
background [38], maternal effects or ontogeny [9], and is viewed as unobservable [21–23,33–
35]. ‘Dynamic’ heterogeneity refers to partially observable discrete states exclusively, and is
accounted for by Markovian models [33–35]. This creates confusion because (i) fixed hetero-
geneity can be accounted for by observable traits (demographic parameters associated with
observable individual covariates) [77], (ii) models considering dynamic latent traits exist
(dynamic frailty) [78,79], (iii) and Markov processes can entail unobservable states [47,80–
82]. It is noteworthy that economists also consider that unobserved components can be
modeled using a Markov process, or time-varying effects [64], and that initial differences in
unmeasured variables can be eliminated with the passage of time [47]. We believe that the
development of a wide range of models for longitudinal data has rendered the usual ‘fixed
versus dynamic heterogeneity’ framework too narrow and imprecise. A more precise termi-
nology would endorse the statistical formalization of differences among individuals in demo-
graphic parameters; this would help clarify what ‘heterogeneity’ covers in different studies and
promote cross-pollination between disciplines. A taxonomy of models is reported in Table [19_TD$DIFF]1;
note that different features can be combined to create more complex models (e.g., state-
dependence plus HPDH). The choice of the statistical models to use depends on answers to
the following questions:
(i) Are parameter values individual-specific? This situation corresponds to individual effects

taking real values from continuous distributions (individual covariates, random effects).
Parameters are individual-specific if they cannot be estimated using data from individual
B to completely characterize individual A, even if A and B have the same age, are in the same
state in the same year for example.

(ii) Is the hierarchy among individuals in survival or fecundity maintained with the passage
of time? Individuals can differ in baseline fecundity rate for example, which corresponds
to a random intercept in random effects models. Individual-specific fecundity can
also change during life, which is modeled using an individual slope for the effect of
age on reproduction. In both cases intercepts are constant, as well as slopes in the
latter situation. However, with random intercept and slope models, individuals with the
largest fecundity when they entered the sample might not necessarily be those
with the largest fecundity as time passes [26,39], because the curves describing variation
of fecundity with age in two individuals can intersect. Permanent heterogeneity corre-
sponds to a situation where the hierarchy among individuals does not change during the
study.

(iii) Do we assume that interindividual variation in demographic parameters can be accounted
for by observable variables only (body condition, physical or physiological characteristics,
etc.), do we consider a ‘mathematical construct’ to account for hidden heterogeneity [83], or
do we consider both sources of variation in tandem?
Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 11
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Table 1. Some Modeling Options to Account for Variation among Individuals in Longitudinal Trajectories

Distribution of demographic
parameters: aggregates
(discrete), or individual-
specific (continuous)?

Demographic
parameter

Model feature
accounting for
heterogeneity
among individuals

Statistical model Consequence: hierarchy
among individuals in
demographic parameters
during life

Modeling option Examples

Time – or
age-invariant
during the
individual's life?

Directly
observable or
measurable?

Continuous Yes Yes Fixed effect models Fixed effect models with time-
invariant individual covariates

Fixed Continuous distribution for
observed individual covariate

[77]

Continuous Yes No Random effect models Random intercept models Fixed Continuous distribution for
latent individual effects

[22,24]

Continuous No Yes Fixed effect models Fixed effect models with time-varying
individual covariates

Varying Continuous distribution for
observed individual covariate

[98]

Continuous No No Random effect models Random intercept- and slope models;
piecewise random intercept models,a

time-varying frailty

Varying Continuous distribution for
latent individual effects

[26,30,44,78,
79,99,100]

Discrete Yes Yes Fixed effect models Fixed effect models with time-
invariant group variables

Fixed Finite number of categories
for group-specific effects

[77]

Discrete Yes No Mixture models Latent mixture models Fixed Finite number of categories
for latent individual effects

[95]

Discrete No Yes Fixed effect models Markov models (multistate CMRb

models)
Varying Finite number of categories

for state-specific effects
[34,67,68,90]

Discrete No No Latent growth mixture
models

Latent growth mixture models Varying Finite number of categories
for latent individual effects

[92]

Discrete No No Fixed effect models Hidden Markov models (multievent
CMR models, semi-Markov models,
latent Markov models)

Varying Finite number of categories
for state-specific effects

[80–82,95]

aIndividual trajectories are split into segments and a random effect is used to model observations from each segment; a multivariate distribution can be used for random effects.
bAbbreviation: CMR, capture-mark-recapture.
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Outstanding Questions in
elucidating the respective
roles that different
sources of heterogeneity
play in the evolution of life
histories
How does the imperfect detectability of
individually marked animals
[[31_TD$DIFF]40,51,52,94,95] affect our ability to
quantify unobserved heterogeneity in
fitness traits [22,23]? Knowledge on
latent demographic traits in wildlife
ecology is lacking, except in unusual
situations with high detectability.

How is unobserved heterogeneity dis-
tributed in the tree of life? Is there a
relationship between longevity and the
degree of heterogeneity? In longitudinal
studies of plants, when all risk factors
affecting mortality cannot be mea-
sured, models accounting for unob-
served heterogeneity are under-
represented [18].

Can initial differences in unmeasured
variables among individuals disappear
over time [ [32_TD$DIFF]47,48], or do they persist?
Models accounting for the former situ-
ation would be consistent with the
‘ontogenetic perspective on individual
differences’ [54], where individual dif-
ferences can be generated during
adulthood, and be reversible.

Do latent fitness traits covary at the
individual level? Is the hierarchy among
individuals for one fitness trait main-
tained for the other considered com-
ponents as well? Answering these
questions is tightly linked to technical
issues about random effect specifica-
tions. Just like trade-offs among fitness
traits can be addressed at the level of
(partially) observable traits and states
[51], the correlation between latent
traits [24,30,50,53] can also be
addressed if one assumes a continu-
ous distribution for random effects.
This correlation can help understand
the pattern of covariation detected at
the population level [11,14].

How can we best estimate hidden per-
manent demographic heterogeneity?
With a continuous distribution of latent
values in the population, or with clus-
ters or groups [ [33_TD$DIFF]92,95]? This choice
might also depend on the study con-
text and objectives.
Concluding Remarks
The hypothesis of a hidden distribution of ‘individual propensities to experience an event’ has
received support in other disciplines, but particular difficulties inherent to imperfect detection of
individually marked wild animals [ [20_TD$DIFF]22,30,40,41,51,52,80,81,84] have slowed down the conver-
gence towards the approaches used in these areas [21_TD$DIFF] [45,63,76,85,86]. Thanks tomethodological
development handling detectability issues, the HPDH hypothesis can be addressed in an
enlarged range of taxa [[22_TD$DIFF]22,23], and the debate about the neutrality of life history variation
has been rekindled by recent evidence of heritability of latent traits [31]. This echoes empirical
studies from humans documenting heritability of frailty [57,87] and calls for investigations in wild
animals [ [23_TD$DIFF]88]. Latent traits are at the heart of a contradiction: (i) in populations with hidden
heterogeneity, the genuine pattern of variation in fitness traits with age within individuals cannot
be assessed unless unobserved heterogeneity taken into account [16,17,25,27–[24_TD$DIFF]29,89]. (ii)
Nevertheless, in many taxa the observed distribution of lifetime reproductive success can be
accounted for by models ignoring HPDH and describing age-related variation in fitness above
the individual level, in aggregates [33–35]. This raises the question of whether different data-
generating processes can lead to identical distributions of Lifetime Reproductive Success [19].
Moreover, ignoring hidden heterogeneity might have led to biased estimates of state-depen-
dence in previous investigations [76]. This is a cause of concern not only in studies of the neutral
theory for life histories, but also in studies of trade-offs among fitness traits using state-
dependence models [[25_TD$DIFF]67,90].

We defend the idea that evaluating the contribution of unobserved heterogeneity and state-
dependence to variation in lifetime fitness requires treating these processes as any other
hypotheses in a multi-model inference framework [30,32,50,74,75,84]. The debate about
the causes of variation in individual life history trajectories will gain in relevance if we consider
explicitly the full range of processes and corresponding models available from other disciplines,
with the caveat that we need to deal with sampling issues in animal ecology (detection
probabilities) that other disciplines can sometimes ignore. Inference approaches should con-
sider a priori that observed trajectories can reflect any intermediate position between two
extremes: a distribution of individual latent demographic parameters [55], and a situation where
aggregates of individuals share the same parameter values, and where variation in observed life
histories arise solely from stochastic processes governed by these parameters [35]. We also
expect, as in other disciplines, that not all the variables associated with individual variation in
demographic parameters can be measured [ [26_TD$DIFF]10,55,56,65,78,79,83]. Interdisciplinary work on
unobserved heterogeneity is needed to avoid statistical pitfalls due to model mis-specification in
longitudinal data analysis [ [27_TD$DIFF]85,86,91–[28_TD$DIFF]93].

Accounting for hidden heterogeneity in models is a precaution to avoid flawed statistical
inferences [ [29_TD$DIFF]11,76], but latent traits also have direct interpretations in evolutionary ecology
[38,42,43,53]. Studies evaluating the extent of hidden heterogeneity, covariation among latent
traits [50], clusters in latent traits associated with relatedness among individuals [57,87] or
common environment, and the ability of observable variables to account for hidden heteroge-
neity are needed to assess the significance of latent traits [30_TD$DIFF] (see Outstanding Questions). The
question of the nature, origin and maintenance of such traits remains open [31].
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