En savoir plus

Notre utilisation de cookies

« Cookies » désigne un ensemble d’informations déposées dans le terminal de l’utilisateur lorsque celui-ci navigue sur un site web. Il s’agit d’un fichier contenant notamment un identifiant sous forme de numéro, le nom du serveur qui l’a déposé et éventuellement une date d’expiration. Grâce aux cookies, des informations sur votre visite, notamment votre langue de prédilection et d'autres paramètres, sont enregistrées sur le site web. Cela peut faciliter votre visite suivante sur ce site et renforcer l'utilité de ce dernier pour vous.

Afin d’améliorer votre expérience, nous utilisons des cookies pour conserver certaines informations de connexion et fournir une navigation sûre, collecter des statistiques en vue d’optimiser les fonctionnalités du site. Afin de voir précisément tous les cookies que nous utilisons, nous vous invitons à télécharger « Ghostery », une extension gratuite pour navigateurs permettant de les détecter et, dans certains cas, de les bloquer.

Ghostery est disponible gratuitement à cette adresse : https://www.ghostery.com/fr/products/

Vous pouvez également consulter le site de la CNIL afin d’apprendre à paramétrer votre navigateur pour contrôler les dépôts de cookies sur votre terminal.

S’agissant des cookies publicitaires déposés par des tiers, vous pouvez également vous connecter au site http://www.youronlinechoices.com/fr/controler-ses-cookies/, proposé par les professionnels de la publicité digitale regroupés au sein de l’association européenne EDAA (European Digital Advertising Alliance). Vous pourrez ainsi refuser ou accepter les cookies utilisés par les adhérents de l'EDAA.

Il est par ailleurs possible de s’opposer à certains cookies tiers directement auprès des éditeurs :

Catégorie de cookie

Moyens de désactivation

Cookies analytiques et de performance

Realytics
Google Analytics
Spoteffects
Optimizely

Cookies de ciblage ou publicitaires

DoubleClick
Mediarithmics

Les différents types de cookies pouvant être utilisés sur nos sites internet sont les suivants :

Cookies obligatoires

Cookies fonctionnels

Cookies sociaux et publicitaires

Ces cookies sont nécessaires au bon fonctionnement du site, ils ne peuvent pas être désactivés. Ils nous sont utiles pour vous fournir une connexion sécuritaire et assurer la disponibilité a minima de notre site internet.

Ces cookies nous permettent d’analyser l’utilisation du site afin de pouvoir en mesurer et en améliorer la performance. Ils nous permettent par exemple de conserver vos informations de connexion et d’afficher de façon plus cohérente les différents modules de notre site.

Ces cookies sont utilisés par des agences de publicité (par exemple Google) et par des réseaux sociaux (par exemple LinkedIn et Facebook) et autorisent notamment le partage des pages sur les réseaux sociaux, la publication de commentaires, la diffusion (sur notre site ou non) de publicités adaptées à vos centres d’intérêt.

Sur nos CMS EZPublish, il s’agit des cookies sessions CAS et PHP et du cookie New Relic pour le monitoring (IP, délais de réponse).

Ces cookies sont supprimés à la fin de la session (déconnexion ou fermeture du navigateur)

Sur nos CMS EZPublish, il s’agit du cookie XiTi pour la mesure d’audience. La société AT Internet est notre sous-traitant et conserve les informations (IP, date et heure de connexion, durée de connexion, pages consultées) 6 mois.

Sur nos CMS EZPublish, il n’y a pas de cookie de ce type.

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de l’INRA par email à cil-dpo@inra.fr ou par courrier à :

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2018

Menu Labex-tulip Logos tutelles

Labex TULIP

Séminaire « Visiting Scientist » Chad Pearson à Moulis

19/06/2018 - Salle séminaire SETE

Séminaire « Visiting Scientist » Chad Pearson à Moulis
Chad Pearson donnera un second séminaire, cette fois-ci à la SETE de Moulis, « Basal body associated striated fibers control their length to organize ciliary arrays » le mardi 19 juin en salle de séminaire de la SETE (Moulis)

PEARSON LAB DESCRIPTION

Centriole Biogenesis and Stabilization for Centrosomes and Cilia

In the Pearson Lab, we delve into several fascinating aspects of centrioles and basal bodies as they perform roles in organizing centrosomes and cilia. Centrosomes consist of a pair of centrioles surrounded by a matrix of pericentriolar material that nucleates cytoplasmic microtubules. During G0/G1 of the cell cycle, centrioles are commonly modified to serve as basal bodies that organize cilia. These cilia (known as primary cilia), sense their environment and transmit signals to the cell nucleus. Other cells produce motile cilia that produce hydrodynamic force generating fluid flow. In the case of motile cilia and the basal bodies that organize them, we capitalize on the ciliated protist, Tetrahymena thermophila, to understand how centrioles and basal bodies assemble, organize at the cell surface and resist mechanical stress produced by ciliary beating.

thepearsonlab.com

MOULIS TALK

Basal body associated striated fibers control their length to organize ciliary arrays

Adam Soh, John V. Dam, Alex Stemm-Wolf, Chad G. Pearson

Multi-ciliary arrays are fields of motile cilia that beat in a coordinated and polarized manner. This organization of cilia is promoted by the basal bodies (BB) that nucleate, anchor and position cilia at the cell cortex. Extending from the base of every BB, striated fibers (SFs) connect BBs to each other and to the cell’s cortex. SF are structurally conserved polymers composed of striations with varying periodicities depending on the organism. Tetrahymena SFs possess striations of 27 nm. Tetrahymena cells possess a network of polarized BBs and SFs that link the approximately 500 BBs per cell. The loss of SFs causes BB and ciliary disorganization that is exacerbated by increased ciliary beating forces. Consistent with a role for SFs in resisting ciliary forces, Tetrahymena SFs lengthen when ciliary beating is elevated. Conversely, SFs shorten when ciliary forces are reduced. This suggests that SFs modulate their length in response to their hydrodynamic environment.  We next studied the structure and protein dynamics of SFs to understand how SF length is controlled. The periodicity between SF striations does not change even when changes to the total SF length occurs. The SF architecture comprises a complex network of 10 SF-assemblin-like proteins. Tetrahymena cells possess the SF-assemblin homologue that forms the core SF structure in algae. In addition, other SF-assemblin-like proteins localize to unique domains within the SF structure. As SFs lengthen during maturation or force induced elongation, the level of SF protein components increases. Thus, local SF protein component levels likely promote SF elongation. In summary, we provide a mechanistic basis for how the complex molecular architecture of SFs controls their length in response to ciliary forces.