Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Labex-tulip Logos tutelles


Temperature-size responses alter food chain persistence across environmental gradients

Temperature-size responses alter food chain persistence across environmental gradients
© Chenille (Lepidoptera sp.) © Arnaud Sentis
One of the main effects of global warming is to reduce the size of cold-blooded organisms such as insects, fish and bacteria. The ecological consequences of these size changes are still poorly understood. Researchers from the EDB Laboratory (member of the TULIP LabEx), the University of South Bohemia (Czech Republic) and Linköping University (Sweden) analyzed the long-term consequences of decreasing the size of cold blooded organisms on the survival of their populations and on the functioning of food chains. In an article published in May 2017 in Ecology Letters, they demonstrate that shrinking organisms can increase their populations survival and thus mitigate the ecological consequences of global warming on ecosystems.

Body-size reduction is a ubiquitous response to global warming alongside changes in species phenology and distributions. However, ecological consequences of temperature-size (TS) responses for community persistence under environmental change remain largely unexplored. Here, we investigated the interactive effects of warming, enrichment, community size structure and TS responses on a three-species food chain using a temperature-dependent model with empirical parameterisation. We found that TS responses often increase community persistence, mainly by modifying consumer-resource size ratios and thereby altering interaction strengths and energetic efficiencies. However, the sign and magnitude of these effects vary with warming and enrichment levels, TS responses of constituent species, and community size structure. We predict that the consequences of TS responses are stronger in aquatic than in terrestrial ecosystems, especially when species show different TS responses. We conclude that considering the links between phenotypic plasticity, environmental drivers and species interactions is crucial to better predict global change impacts on ecosystem diversity and stability.

Figure Fait Marquant Sentis 2017

[Figure 1] Example of the effect of temperature on the size of organisms in a food chain composed of the dragonfly larva Libellula quadrimaculata (photo: © Arnaud Sentis) consuming the crustacean Daphnia magnia (photo: © Hajime Watanabe) - even feeds on the green alga Chlorella vulgaris (photo: © The higher the temperature, the smaller the individuals.

See also

Arnaud Sentis, Amrei Binzer & David S. Boukal (2017) Temperature-size responses alter food chain persistence across environmental gradients.Ecology Letters.