Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo TULIP Nouveau bandeau tutelles EN

Home

Details of the program

Details of the program
© pixabay
The Master's degree Functional Biology and Ecology is a two–year program.

During the first year, the Master proposes

An Integration Week (30 h) that takes place outside of the two university campuses, to provide several transversal training and build up teamwork capabilities among students coming from very diverse university courses. Transversal training proposed in the integration week includes Scientific Communication, Professional Insertion and Career, Ethics in Science and Professional Risk and Prevention modules. Also, a Mastering Grant Application module, designed as a role-playing game, is proposed to illustrate all facets of writing, answering and evaluating grant applications. Outdoor Team-Building activities complete this week.

A Guided Tour of the TULIP Consortium (210 h). Students spend one week in each of the six TULIP laboratories in Toulouse, Moulis and Perpignan, where teachers and researchers organize theoretical and practical training centered on laboratories’ main research projects. An exam will evaluate acquired competencies at the end of each week.

The training program of the TULIP Guided Tour - Master 1

The proposed training allows students to acquire the necessary knowledge in functional biology, ecology-evolution and statistics to develop research projects at the interface between these scientific fields. Visits of the TULIP laboratories and associated platforms (Aquatron, Metatron, Genomics sequencing, metabolomics, microscopy, phenotyping) are proposed during this training.

Functional biology (~ 100h): Eukaryotic gene regulation mechanisms during development and stress; Epigenetic mechanisms and chromatin architecture (DNA methylation, histone modifications, epigenetic marks); RNA interference and small RNAs, RNA processing, stability, transport, translation; Epitranscriptomics; RNA binding proteins; Post-translational modifications, ubiquitination, sumoylation; Forward genetic, genome editing; Genome sequencing (methods and strategies), transcriptomics, translatomics, degradome; Cell signaling concepts applied to plant-microorganism interactions (pathogens and symbiotics) and development; Plant development and hormones; General concepts in phytopathology and analysis of the pathogenicity of microorganisms, adaptation to the environment, study of immune responses and interactions with climate change; symbiotic interactions at the level of roots and in the phyllosphere, evolution of genomes in symbiotic bacteria, symbiosis with fungi and nodular development, rhizogenesis; adaptations in plant communities.

Ecology and Evolution (~ 100h): How to do research in ecology and evolution? Key concepts in population dynamics; Genes in ecology and evolution; biology of species formation; key concepts in evolution of cooperation and mutualisms, behavioural ecology; functioning of the system, and prediction of its behaviour under different scenarios. Why species diversity varies from place to place? Is Nature chaotic? Intraspecific diversity:, ecosystem consequences and conservation ;  How animal behavior and human impacts interact; Evolutionary responses to climate change: population and community consequences; climate change and natural systems: Impacts, Conservation Challenges, Environmental and epigenetic diversity, from gene expression to ecosystem functioning ; holobiont, host microbiota interactions (bacteria, archaea, viruses, protists); holobiont dynamics and fitness; coevolution, methods of analysis with examples from the labs: phylosymbiosis in snails vector for schistosomiasis / the coral holobiont response to heat stress; Host-parasite compatibility and immunobiological interactions; from the molecule to the population. Visit of experimental infrastructures (vertebrate and invertebrate). Mechanisms of virulence, cytotoxity, and immune evasion observed in natural populations of vibrios colonizing oysters. An integrative view, from genetics to cellular and molecular interactions; Introduction to Theoretical Biology and to systems biology, modelling.

Statistics for Biology (~ 20 h): introduction to R, programming, parametric and non-parametric hypothesis tests (distribution tests, independence tests, comparisons of means and variances, ANOVA), linear model (single and multiple regression, ANCOVA) and generalized linear model, classification and multivariate analyzes (ACP).

Team Construction of the “Junior Lab” Project (8 weeks). Working in small groups, students address problems raised by non-profit organizations, associations, natural reserves, municipalities, professional organizations or private companies. With the help of tutors, students write a formal grant application describing (i) the interdisciplinary aspect of the problem-solving strategy they propose, (ii) the experimental protocols with associated costs, and/or (iii) the statistical/theoretical models that are performed.

Team implementation of the “Junior Lab” Project and Reporting (5 months). Each student team will perform the experimental/modeling strategy proposed in their “Junior Lab” grant application. Free access to necessary experimental equipment and/or computing facilities are provided and, under tutors’ supervision, teams are autonomous enough to organize and execute their project. Then, each student team collectively writes a report on their “Junior Lab” project and defends it in front of a jury.

During the second year, the TULIP-GS Master proposes

Two Guided Tours of the International Community (2 weeks). Training during these two weeks is provided by ten invited renowned international scientists who give lectures followed by round tables with practical exercises.

Construction of the individual Internship Project (7 weeks). Based on experiences gathered in the two Guided Tours, students chose a topic and work with a tutor to develop a scientifically sound interdisciplinary internship project. Each student will defend all aspects of their project (including funding) in front of a TULIP-GS jury. M2 TULIP-GS students who need to be hosted by other labs than TULIP labs for all or part of their project will be eligible for a supplemental TULIP-GS Master Mobility Package.

Individual Internship and Reporting (7 months). Under the supervision of their tutor, students perform their internship projects. A mid-term progress report is requested, followed by a final reporting and oral interview in front of a jury at the end of the project.

Team Writing of a Mini-Review Article (6 weeks). Working in small groups, students chose a topic and write a mini-review supervised by a tutor. A TULIP-GS jury selects the mini-review(s) deserving to be submitted to a scientific journal for publication.